Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Mycoses ; 65(5): 541-550, 2022 May.
Article in English | MEDLINE | ID: covidwho-1714274

ABSTRACT

BACKGROUND: COVID-19-associated pulmonary aspergillosis (CAPA) is a major complication of critically ill COVID-19 patients, with a high mortality rate and potentially preventable. Thus, identifying patients at high risk of CAPA would be of great interest. We intended to develop a clinical prediction score capable of stratifying patients according to the risk for CAPA at ICU admission. METHODS: Single centre retrospective case-control study. A case was defined as a patient diagnosed with CAPA according to 2020 ECMM/ISHAM consensus criteria. 2 controls were selected for each case among critically ill COVID-19 patients. RESULTS: 28 CAPA patients and 56-matched controls were included. Factors associated with CAPA included old age (68 years vs. 62, p = .033), active smoking (17.9% vs. 1.8%, p = .014), chronic respiratory diseases (48.1% vs. 26.3%, p = .043), chronic renal failure (25.0% vs. 3.6%, p = .005), chronic corticosteroid treatment (28.6% vs. 1.8%, p < .001), tocilizumab therapy (92.9% vs. 66.1%, p = .008) and high APACHE II at ICU admission (median 13 vs. 10 points, p = .026). A score was created including these variables, which showed an area under the receiver operator curve of 0.854 (95% CI 0.77-0.92). A punctuation below 6 had a negative predictive value of 99.6%. A punctuation of 10 or higher had a positive predictive value of 27.9%. CONCLUSION: We present a clinical prediction score that allowed to stratify critically ill COVID-19 patients according to the risk for developing CAPA. This CAPA score would allow to target preventive measures. Further evaluation of the score, as well as the utility of these targeted preventive measures, is needed.


Subject(s)
COVID-19 , Invasive Pulmonary Aspergillosis , Pulmonary Aspergillosis , Aged , COVID-19/complications , Case-Control Studies , Critical Illness , Humans , Intensive Care Units , Invasive Pulmonary Aspergillosis/complications , Invasive Pulmonary Aspergillosis/diagnosis , Invasive Pulmonary Aspergillosis/drug therapy , Pulmonary Aspergillosis/complications , Retrospective Studies , Risk Factors , SARS-CoV-2
2.
J Fungi (Basel) ; 8(2)2022 Feb 06.
Article in English | MEDLINE | ID: covidwho-1708251

ABSTRACT

Introduction: Cytomegalovirus (CMV) infection is a well-known factor associated with invasive aspergillosis in immunocompromised hosts. However, its association with COVID-19-associated pulmonary aspergillosis (CAPA) has not been described. We aimed to examine the possible link between CMV replication and CAPA occurrence. Methods: A single-center, retrospective case-control study was conducted. A case was defined as a patient diagnosed with CAPA according to 2020 ECMM/ISHAM consensus criteria. Two controls were selected for each case among critically ill COVID-19 patients. Results: In total, 24 CAPA cases were included, comprising 14 possible CAPA and 10 probable CAPA. Additionally, 48 matched controls were selected. CMV replication was detected more frequently in CAPA than in controls (75.0% vs. 35.4%, p = 0.002). Probable CMV end-organ disease was more prevalent in CAPA (20.8% vs. 4.2%, p = 0.037). After adjusting for possible confounding factors, CMV replication persisted strongly associated with CAPA (OR 8.28 95% CI 1.90-36.13, p = 0.005). Among 11 CAPA cases with CMV PCR available prior to CAPA, in 9 (81.8%) cases, CMV replication was observed prior to CAPA diagnosis. Conclusions: Among critically ill COVID-19 patients, CMV replication was associated with CAPA and could potentially be considered a harbinger of CAPA. Further studies are needed to confirm this association.

3.
Int J Infect Dis ; 116: 339-343, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1683188

ABSTRACT

OBJECTIVES: The aim of the study was to analyze the mortality and characteristics of deceased patients with COVID-19 during the first year of the pandemic. METHODS: All admissions owing to COVID-19 at a tertiary hospital in Madrid were analyzed. Three waves were considered: March 2020 to June 2020, July 2020 to November 2020, and December 2020 to April 2021. RESULTS: A total of 3,676 patients were identified. Among inpatients, no differences regarding age, sex, length of admission, or mortality were found between the 3 waves (p >0.05). The overall mortality rate was 12.9%. Among deceased patients, the median age was 82 years and the median Charlson Comorbidity Index was 6. Considering the main predictors for mortality by COVID-19 (age, sex, and concomitant comorbidities), only patients with previous lung disease were more prevalent in the third period (p <0.01). Finally, higher intensive care unit admission rates, a lower rate of patients coming from nursing homes, and a lower rate of patients with dementia were noted in the third period (p <0.05) among deceased patients. CONCLUSION: One year after the onset of the pandemic, the mortality rate of hospitalized patients and the profile of non-survivors have not changed significantly. In the absence of vaccine benefits, advanced age and multiple pathologies are uniform characteristics of non-survivors.


Subject(s)
COVID-19 , Aged, 80 and over , COVID-19/prevention & control , Comorbidity , Hospital Mortality , Humans , Pandemics/prevention & control , Retrospective Studies , SARS-CoV-2 , Vaccination
4.
Antimicrob Agents Chemother ; 64(9)2020 08 20.
Article in English | MEDLINE | ID: covidwho-729357

ABSTRACT

Evidence to support the use of steroids in coronavirus disease 2019 (COVID-19) pneumonia is lacking. We aim to determine the impact of steroid use for COVID-19 pneumonia on hospital mortality. We performed a single-center retrospective cohort study in a university hospital in Madrid, Spain, during March of 2020. To determine the role of steroids in in-hospital mortality, patients admitted with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia and treated with steroids were compared to patients not treated with steroids, and we adjusted with a propensity score for patients on steroid treatment. Survival times were compared using the log rank test. Different steroid regimens were compared and adjusted with a second propensity score. During the study period, 463 out of 848 hospitalized patients with COVID-19 pneumonia fulfilled inclusion criteria. Among them, 396 (46.7%) patients were treated with steroids and 67 patients were not. Global mortality was 15.1%. The median time to steroid treatment from symptom onset was 10 days (interquartile range [IQR], 8 to 13 days). In-hospital mortality was lower in patients treated with steroids than in controls (13.9% [55/396] versus 23.9% [16/67]; hazard ratio [HR], 0.51 [95% confidence interval, 0.27 to 0.96]; P = 0.044). Steroid treatment reduced mortality by 41.8% relative to the mortality with no steroid treatment (relative risk reduction, 0.42 [95% confidence interval, 0.048 to 0.65]). Initial treatment with 1 mg/kg of body weight/day of methylprednisolone versus steroid pulses was not associated with in-hospital mortality (13.5% [42/310] versus 15.1% [13/86]; odds ratio [OR], 0.880 [95% confidence interval, 0.449 to 1.726]; P = 0.710). Our results show that the survival of patients with SARS-CoV-2 pneumonia is higher in patients treated with glucocorticoids than in those not treated. Rates of in-hospital mortality were not different between initial regimens of 1 mg/kg/day of methylprednisolone and glucocorticoid pulses.


Subject(s)
Antiviral Agents/therapeutic use , Azithromycin/therapeutic use , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Hydroxychloroquine/therapeutic use , Interferons/therapeutic use , Lopinavir/therapeutic use , Methylprednisolone/therapeutic use , Pneumonia, Viral/drug therapy , Ritonavir/therapeutic use , Aged , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , COVID-19 , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/immunology , Cardiovascular Diseases/mortality , Cardiovascular Diseases/virology , Comorbidity , Coronavirus Infections/immunology , Coronavirus Infections/mortality , Coronavirus Infections/virology , Diabetes Mellitus/drug therapy , Diabetes Mellitus/immunology , Diabetes Mellitus/mortality , Diabetes Mellitus/virology , Drug Administration Schedule , Drug Combinations , Drug Therapy, Combination , Dyslipidemias/drug therapy , Dyslipidemias/immunology , Dyslipidemias/mortality , Dyslipidemias/virology , Female , Hospitals, University , Humans , Intensive Care Units , Length of Stay/statistics & numerical data , Male , Middle Aged , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/mortality , Neoplasms/virology , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/mortality , Pneumonia, Viral/virology , Retrospective Studies , SARS-CoV-2 , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL